首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2544篇
  免费   400篇
  国内免费   789篇
化学   2228篇
晶体学   48篇
力学   162篇
综合类   14篇
数学   143篇
物理学   1138篇
  2024年   5篇
  2023年   26篇
  2022年   65篇
  2021年   110篇
  2020年   128篇
  2019年   80篇
  2018年   78篇
  2017年   103篇
  2016年   159篇
  2015年   122篇
  2014年   190篇
  2013年   306篇
  2012年   237篇
  2011年   302篇
  2010年   226篇
  2009年   257篇
  2008年   242篇
  2007年   223篇
  2006年   182篇
  2005年   156篇
  2004年   120篇
  2003年   96篇
  2002年   59篇
  2001年   53篇
  2000年   38篇
  1999年   22篇
  1998年   26篇
  1997年   23篇
  1996年   7篇
  1995年   12篇
  1994年   10篇
  1993年   8篇
  1992年   4篇
  1991年   10篇
  1990年   3篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   7篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有3733条查询结果,搜索用时 171 毫秒
1.
This article aims to provide a survey of biological applications of Schiff base macrocycles and their metal complexes, with emphasis given to the synthesis of the compounds and to their uses as antibacterial and antifungal agents. The literature on the subject, published during the 2005–2019 period, is shortly reviewed. This is an informed report collecting information on the addressed topic in a concise systematic way, and can be expected to be useful as a fast literature catalogue for researchers working on this and related domains.  相似文献   
2.
This research demonstrates, a facile approach to fabricate the nano ZnO system in an unique combination of surfactant-polyol-assembly (SPA) acting as a caging agent restricting the ZnO crystallite size in nano-regime. This SPA is suitable for health and hygiene products and such optimized technique is among the very few researches exploring the impact of embedding low concentrations of nano ZnO system into the matrix of sodium salt of long chain fatty acids (soap bar) and liquid cleansing personal care products. The fabricated nano ZnO in SPA and infused products were systematically characterized using various advanced and appropriate techniques. The hexagonal wurtzite structure of nano ZnO-SPA is evaluated based on XRD pattern which also exhibit an average crystallite size as 20.18 nm and high specific surface area as 52.99 m2/g. The SEM-supported morphological assessment confirms the formation of agglomerates of ultrafine ZnO rods and spherical particles. Novel nano ZnO having wideband gap energy (3.66 eV) embedded in soap bar act as a UV-blocker preventing the oxidation of unsaturated long chain fatty acids. Soap bar without ZnO experienced degradation and reduction in whiteness to 17.85% whereas 2.5 mg/g nano ZnO infused soap shows the reduction to 7.9% which clearly reflects the increased photostability of soap bar. The antibacterial efficacy of nano ZnO-SPA and infused products are investigated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by Zone of Inhibition (ZOI) and European standard EN:1276. Infused products exhibited high antibacterial efficacy up to 4.43 log reduction equivalent to >99.99% germ kill.  相似文献   
3.
Additive manufacturing (AM), otherwise known as three‐dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education, and medicine. Although a considerable amount of progress has been made in this field, additional research work is required to overcome various remaining challenges. Recently, one of the actively researched areas lies in the AM of smart materials and structures. Electroactive materials incorporated in 3D printing have given birth to 4D printing, where 3D printed structures can perform as actuating and/or sensing systems, making it possible to deliver electrical signals under external mechanical stimuli and vice versa. In this paper, we present a lightweight, low cost piezoelectric material based on the dispersion of inorganic ferroelectric submicron particles in a polymer matrix. We report on how the proposed material is compatible with the AM process. Finally, we discuss its potential applications for healthcare, especially in smart implants prostheses. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 109–115  相似文献   
4.
Cyclohexane and cyclotri-β-alanyl have been used as scaffolds for the design of new C3-symmetric rings incorporating conjugated alkenes and dienes. All three C3-symmetric lactams share the same triangular shape and their crystal system is trigonal. They all belong to the R3 space group, R3m, R3 and R3c, for the increasingly large 12-, 18- and 24-membered rigid rings, respectively. All lactams stack on top of each other, through H-bonds and van der Waals noncovalent interactions, leading to endless supramolecular cylinders and tubes. The largest member of the family leads to tubes, the central pores of which is wide enough to let water in. A common feature of all the lactams is their very large dipole, of around 9 D, according to DFT calculations. Surprisingly, all the resulting cylinders and tubes pack side by side in the crystals, with all the dipoles pointing to the same direction. As a result, all three crystals are anisotropic and appear to be the first members of a new kind of highly polar crystals.  相似文献   
5.
Flexible lithium/sulfur (Li/S) batteries are promising to meet the emerging power demand for flexible electronic devices. The key challenge for a flexible Li/S battery is to design a cathode with excellent electrochemical performance and mechanical flexibility. In this work, a flexible strap-like Li/S battery based on a S@carbon nanotube/Pt@carbon nanotube hybrid film cathode was designed. It delivers a specific capacity of 1145 mAh g−1 at the first cycle and retains a specific capacity of 822 mAh g−1 after 100 cycles. Moreover, the flexible Li/S battery retains stabile specific capacity and Coulombic efficiency even under severe bending conditions. As a demonstration of practical applications, an LED array is shown stably powered by the flexible Li/S battery under flattened and bent states. We also use the strap-like flexible Li/S battery as a real strap for a watch, which at the same time provides a reliable power supply to the watch.  相似文献   
6.
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.  相似文献   
7.
In the last decade,the functionally graded carbon nanotube reinforced composites(FG-CNTRCs)have attracted considerable interest due to their excellent mechanical properties,and the structures made of FG-CNTRCs have found broad potential applications in aerospace,civil and ocean engineering,automotive industry,and smart structures.Here we review the literature regarding the mechanical analysis of bulk CNTR nanocomposites and FG-CNTRC structures,aiming to provide a clear picture of the mechanical modeling and properties of FG-CNTRCs as well as their composite structures.The review is organized as follows:(1)a brief introduction to the functionally graded materials(FGM),CNTRCs and FG-CNTRCs;(2)a literature review of the mechanical modeling methodologies and properties of bulk CNTRCs;(3)a detailed discussion on the mechanical behaviors of FG-CNTRCs;and(4)conclusions together with a suggestion of future research trends.  相似文献   
8.
This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The governing equations are derived based on the first shear deformation theory(FSDT). A three-phase HalpinTsai approach is used to predict the mechanical properties of the PHC. We focus our attention on the effect of the simultaneous addition of NC and CNT on the vibration and buckling analysis of the PHC beam with variable thickness. Also a comparison study is done on the sensation of three impressive parameters including CNT, NC weight fractions, and the shape factor of fillers on the mechanical properties of PHC beams,as well as fundamental frequencies of free vibrations and critical buckling load. The results show that the increase of shape factor value, NC, and CNT weight fractions leads to considerable reinforcement in mechanical properties as well as increase of the dimensionless fundamental frequency and buckling load. The variation of CNT weight fraction on elastic modulus is more sensitive rather than shear modulus but the effect of NC weight fraction on elastic and shear moduli is fairly the same. The shape factor values more than the medium level do not affect the mechanical properties.  相似文献   
9.
The manufacture of three‐dimensional patterned electroactive poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) microstructures with tailored architecture, morphology, and wettability is presented. The patterned microstructures are fabricated using a simple, effective, low cost, and reproducible technique based on microfluidic technology. These novel structures can represent innovative platforms for advanced strategies in a wide range of biotechnological applications, including tissue engineering, drug delivery, microfluidic, and sensors and actuators devices. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1802–1810  相似文献   
10.
采用基于第一性原理的密度泛函理论(DFT)和局域密度近似(LDA)方法,优化计算得到碳纳米管(CNT),硼原子取代碳原子及其吸附氖原子前后系统的几何结构,能量,电子能带和态密度。结果显示,碳纳米管的能带结构与石墨的层状几何结构相似,能量的变化只在kz=0和kz=0.5平面之间沿着c轴方向出现。B原子取代C原子使价带和导带分别分裂为两个和三个能带。对Ne原子的吸附使价带能量沿着c轴方向升高并导致Fermi面附近的态密度下降。Ne原子的吸附在谷位H最稳定,顶位A其次。C-C间σ键的弯曲使Ne原子吸附在桥位b1比桥位b2处更为稳定。Ne原子在管外的吸附均为放热过程,而管内则为吸热过程。结构分析表明Ne原子对C原子有排斥作用,对B原子却具有吸引作用。B原子取代C原子的位置略凸出于CNT的管壁之外,使Ne原子的吸附能增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号